에이아이파트너

📋 GAM은 “컨텍스트 부패”를 목표로 합니다: 긴 컨텍스트 LLM보다 성능이 뛰어난 이중 에이전트 메모리 아키텍처 완벽가이드

  1. 소개
  2. 핵심 특징
  3. 상세 정보

✨ GAM은 “컨텍스트 부패”를 목표로 합니다: 긴 컨텍스트 LLM보다 성능이 뛰어난 이중 에이전트 메모리 아키텍처

★ 8 전문 정보 ★

For all their superhuman power, today’s AI models suffer from a surprisingly human flaw: They forget. Give an AI assistant a sprawling conversation, a multi-step reasoning task or a project spanning days, and it will eventually lose the thread. Engineers refer to this phenomenon as “context rot,” an

🎯 핵심 특징

✅ 고품질

검증된 정보만 제공

⚡ 빠른 업데이트

실시간 최신 정보

💎 상세 분석

전문가 수준 리뷰

📖 상세 정보

For all their superhuman power, today’s AI models suffer from a surprisingly human flaw: They forget. Give an AI assistant a sprawling conversation, a multi-step reasoning task or a project spanning days, and it will eventually lose the thread. Engineers refer to this phenomenon as “context rot,” and it has quietly become one of the most significant obstacles to building AI agents that can function reliably in the real world.A research team from China and Hong Kong believes it has created a solution to context rot. Their new paper introduces general agentic memory (GAM), a system built to preserve long-horizon information without overwhelming the model. The core premise is simple: Split memory into two specialized roles, one that captures everything, another that retrieves exactly the right things at the right moment.Early results are encouraging, and couldn’t be better timed. As the industry moves beyond prompt engineering and embraces the broader discipline of context engineering, GA

📰 원문 출처

원본 기사 보기

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다